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lar or TEIuO circular waveguide networks through the application
of the mixed mode filter. A novel feature of this concept is its poten-

tial capability of realizing planar cross-coupled filter designs.
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Letters

The Admittance Matrix of Coupled Transmission Lines

A. I. GRAYZEL

Abstract—An alternate derivation of the admittance matrix of n

coupled lines is presented. The method uses the superposition of

two modes of excitation analagous to the even and odd mode exci-

tation used for the analysis of two coupled lines. Only mutual

capacitance to adjacent lines is considered.

In this letter an alternate derivation of the admittance matrix
derived by Riblet [1] is presented. The configuration is shown in
Fig. 1 and the matrix is defined by (1) which are identical to [1,
fig. 1 and eq. (l)]:
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where Ii ,V is the current flowing into the jv node and V.,% is the

voltage of node iu with respect to the ground plane. i and j take on
values from 1 through n, u and v are either a or b. Reciprocity requires

, . and hence we can find all of the element valuesthat yi,j~,w = yi.~ ,

of the admittance matrix as given in (2) by connecting a voltage

source to only one side of each line, i, e., to nodes ia as shown in

Fig. 2. Symmetry requires that y,,,ti!” = y,,i”,u and Y1,,’J,u = Y;,i”,’.

We will solve the problem of Fig. 2 by superposition of the circuit
of Fig. 3 (a) and the circuit of Fig. 3(b). We will refer to the excita-
tion of Fig. 3 (a) as mode 1 excitation and that of Fig. 3 (b) as mode
2 excitation. Under mode 1 excitation the incident voltage wave on
all of the lines will be equal. Since all of the lines are terminated in
a short circuit the reflected waves will also be equal. Thus the voltage
on all of the lines will be equal for their entire length. It is well known

that for a wave propagating in the TEM mode the fields in the
transveme plane satisfy Laplace’s equation, and hence the charac-
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where p = – j cot (o) and t = see (0).

From the definition of the admittance matrix

I~i,iu,v = ~

*.U all voltages are zero except V,.. (2)
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teristic impedances can be determined from a static field configura-

tion or from the static ca~acitances. In Fig. 4(a) the static ca~aci-

tances of the coupled lin-= are shown. F& the ‘mode 1 excit~tion
the voltage on all of the lines are equal and hence there can be no
current through the mutual capacitances. We can treat the lines as

uncoupled lines with capacitance to ground per unit Isngth equal to
C,. Under mode 2 excitation the incident voltage on line i will be
the negative of the voltage on all of the other lines. Since all of the
lines have short-circuited terminations the reflected voltage wave
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Fig. 1.

Fig. 2.

(a)

(b)

Fig. 4.

on line.i will be the negative of the reflected waves on all of the other

linw. Thus the voltage on line i will be the negative of the volthge

on all of the other lines for its entire length. With reference to Fig.

4(a), if line i is at a potential V and line i – 1 and lines i + 1 are
at potential — V then potits Zi-I and Zi must be at zero ppteritia~

and hence can be grounded. The static capacitances for mode 2
excitation are therefore those shown in Fig. 4(b).

Using the notation that Y,,~ is the mode 1 characteiisticadmittance

of the ith line, and Y02~ is the mode 2 characterktic admittance of
the jth line, we can write

YOIJ = Vci, j=l,z,. ..?l

YOP = )P(c&l + 2ci-l,i , ~=l,z,...n

Yo2i = V (Ci + 2Ci-l,i _E Zci,i+l) I i=l,2,. ..n

Yo2~+1 = v (Ci+l + X7t.i+ll ) i=l,2, ”””n

YOZJ= VCj, j=l,2,. ..2, i+2, :”:n.n (3)

where

Col = C.,.+1 = O co = Cn+l = 0.

We shall now proceed to find the currents in all of the nodes for
mode 1 and inode 2 excitations. Adding the respective ctmrents will
then yield the currents in all of the nodes of the circuit of Fig. 2.
Equation (2) then yields all of the matrix elements. .We treat all of
the lines as uncoupled lines with charaiterktic admittance given

by (3). The currents are given by

Ii.’ = –jvl cot (e) YO1’/2 Ii,@’ – jVl (cot (e) YO//2

~i,b’ = jVIYOI’/ (2 ‘in (0)) 1,,# = jVIY~i/ (2 sin (0))
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Fig. 1. (a) n
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coupled transmission lines. (b) Capacitances per unit
Iengthof thelifiesof Fig. l(a).
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Fig. 2. (a) Network consisting of n – 1 pairs of coupled lines. (b)
Capacitances per unit length of the lines of Fig. 2 (a).

Ii+l,.l = –jv, cot (e) Yol~+l/2 1,+1,.2 =jvzcot (c)Y-o,’+’/2

Il+l,bl = jVIYOl*+’/ (2 sin (0) li+~,~’= –jV,Y0,’+’/(2 sin(0))

l;-,,=l = –jvl cot (e) Yol~-1/2 Ii-l,a’ =jvl cot (e) Yo2’-’/2

li_~,~’ = jV,YOl’-’/ (2 sin (f?)) Ii-,,~2= –jV,Y0,i-1/(2 sin (0))

(4)

where Ij,.l is the current in thejv node for mode 1 excitation and
similarly Ii,.j is the current in the @ node for mode 2 excitation.
Equation (2) then yields, whenp = –jcot (0) andt =sec(tl),

yi,$~ = –jCot (6’) (YOl~ + Y02’)/2 = ?(ci+ct-l,i +c,,i+l)p

!Jiia’b = ~(YO1’+ Y02t)/(2 sin (0)) = ‘V(C. +C&l.i+Ci,i+l)~t

yi,i+la.. = jcot (e)(Yo2~+1– YO1’+’)/2 = –V(c,, i+l)p

vi ;+1G,5 = –j(YO*’+l – YOl$+lj/(2 sin (0)) = .( Cz.l+l)pt

yi,i-p,” =j cot (0)( Y02$–1 – Yol~–1)/2 = –v(c*_l,i)p

yi,%_l.J b –j(Yo2~–1 – YO1’-1)/(2 sin(@)) =v(C, _,,, )pt. (5)

We see from (3) that if j i –jl is greater than 1 that YOl~ = YOZ~

and hence superposition of mode 1 and mode 2 excitation yields
zero current, and y,,i~, w = O. We find using (5), reciprocity and the
symmetry of thenetworkj that theadmittance matrix is thatof (1)

where

y,, =V(cl+cfi)

Y., = V(CZ-l,*+C, +C$,t+l)

y.. = .(cn +C.-l,fi)

Yi, i+l = –Vc,,,+l. (6)
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A Useful Identity for the Analysis of a Class of

Coupled Transmission-Line Structures

A. I. GRAYZEL

Absfracf—In this letter an identity is proven which allows easy

analysis of many coupled traiwmission-line structures.

Inthisletter wewillprove the followiugtheorern: if only nearest
neighbor couplings are considered n commensurate-coupled trans-
mission lines can be reduced to a network consisting of n — 1 paire

of coupled lines.
To prove thk theorem we will prove that the network of Fig. 1

and the network of Fig. 2 are equivalent. In Fig. l(a) is shown a
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