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lar or TE11° circular waveguide networks through the application
of the mixed mode filter. A novel feature of this concept is its poten-
tial capability of realizing planar cross-coupled filter designs.
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The Admittance Matrix of Coupled Transmission Lines

A. 1. GRAYZEL

Abstract—An alternate derivation of the admittance matrix of n
coupled lines is presented. The method uses the superposition of
two modes of excitation analagous to the even and odd mode exci-
tation used for the amalysis of two coupled lines. Only mutual
capacitance to adjacent lines is considered.

In this letter an alternate derivation of the admittance matrix
derived by Riblet [1] is presented. The configuration is shown in
Fig. 1 and the matrix is defined by (1) which are identical to [1,
fig. 1 and eq. (1)7: :

I, Yu —Yut Yie —Yuat 0
I —Yut Yu —Yut Yie 0
I Yo =Yt Yoo —Yal Yo
I ~Y 1t Yie —Yoat Yoo —Yout
I =9p 0 0 Yos —Yout Y
Iy . . — Yot Yo —Yaol
La . . . . .
Is . . . .

where p = — jcot (9) and ¢ = sec (6).

From the definition of the admittance matrix

Viu all voltages are zero except V..,

(2)
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where I;, is the current flowing into the jo node and V.. is the
voltage of node 7u with respect to the ground plane. 7 and 7 take on
values from 1 through n, v and v are either g or b. Reciprocity requires
that y; ,»* = y;;* and hence we can find all of the element values
of the admittance matrix as given in (2) by connecting a voltage
source to only one side of each line, i.e., to nodes 7a¢ as shown in
Fig. 2. Symmetry requires that y, ,»* = y, ;%% and y; ,»* = y;,;7°.
We will solve the problem of Fig. 2 by superposition of the circuit
of Fig. 3(a) and the circuit of Fig. 3(b). We will refer to the excita-
tion of Fig. 3(a) as mode 1 excitation and that of Fig. 3(b) as mode
2 excitation. Under mode 1 excitation the incident voltage wave on
all of the lines will be equal. Since all of the lines are terminated in
a short circuit the reflected waves will also be equal. Thus the voltage
on all of the lines will be equal for their entire length. It is well known
that for a wave propagating in the TEM mode the fields in the
transverse plane satisfy Laplace’s equation, and hence the charac-

. . Via
. . Vi
— Yot 0 . . Vo
Yo 0 . . Va
— Yl Yu —Ysi o - | Ve 1)
Yo —Yid Yo 0 . . Vaw
. . . Yin + —Yauul T/.na
. . o =Yt - Yon Vb

teristic impedances can be determined from a static field configura-
tion or from the static capacitances. In Fig. 4(a) the static capaci-
tances of the coupled lines are shown. For the mode 1 excitation
the voltage on all of the lines are equal and hence there can be no
current through the mutual capacitances. We can treat the lines as
uncoupled lines with capacitance to ground per unit length equal to
C.. Under mode 2 excitation the incident voltage on line 7 will be
the negative of the voltage on all of the other lines. Since all of the

lines have short-circuited terminations the reflected voltage wave
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on line.s will be the negative of the reflected waves on all of the other Yoit! = »(Cipa +2C0in), i =1,2,-+m
lines. Thus the voltage on line ¢ will be the negative of the voltage , . . . .
on all of the other lines for its entire length. With reference to Fig. Yo =vC;,  § =120 =27+25n @)
4(n), if line ¢ is at a potential V' and line ¢ — 1 and lines 7 +1 are  ywhere
at potential —V then points 21 and z; must be at zero potential P
Ca = Cn,n+l =0 Co = Cn+1 = 0.

and hence can be grounded. The static capacitances for node 2
excitation are therefore those shown in Fig. 4(b).

Using the notation that Yo is the mode 1 characteristicadmittance
of the jth line, and Yo is the mode 2 characteristic admittance of
the jth line, we can write

Yo =»Cj,
Yot = »(Ciy + 2Ci1.4),
Vot = »(Cs +2Ci-1,s +2Cii),

j = 1’2’--on
] = 1’2,...n

Q=121

We shall-now proceed to find the currents in all of the nodes for
mode 1 and mode 2 excitations. Adding the respective carrents will
then yield the currents in all of the nodes of the cireuit of Fig. 2.
Equation (2) then yields all of the matrix elements. We treat all of
the lines as uncoupled lines with characteristic admittances given
by (3). The currents are given by

I o —]Vl cot (9) Yu'/2
It = jVi¥u'/ (2sin (()))]

Lis —jVi(cot (8)Yori/2
1.2 = jVi¥e'/ (2sin (6))

1 =
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Fig. 2. (a) Network consisting of n — 1 pairs of coupled lines. (b)
Capacitances per unit length of the lines of Fig, 2(a).
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where I, ! is the current in the j» node for mode 1 excitation and

similarly I;.? is the current in the jv node for mhode 2 excitation.
Equation (2) then yields, when p = —j cot (8) and ¢ = sec (8),

Yii»® = —jcot (0) (Yol + Yu)/2 = »(Ci + Cocii + C, i1)p
1@ =J (Yo' + Yo') /(2510 (8)) = —»(C. + Cisi + Ciripa)pt
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We see from (3) that if | ¢ — j| is greater than 1 that Yo = Vo
and hence superposition of mode 1 and mode 2 excitation yields
zero cufrent, and y, /+* = 0. We find using (5), recxpromty and the
symmetry of the network, that the admittance matrix is that of (1)
where

Yu=»(Ci + Cp)
Yie=v(Ciso + C. + Coipa) '
Yoo =v(Crn + Cran)
Yiipn = —vCi s (6)
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A Useful Identity for the Analysis of a Class of
Coupled Transmission-Line Structures

A. I. GRAYZEL

Abstract—In this letter an identity is proven which allows easy
analysis of many coupled transmission-line structures.

In this letter we will prove the following theorem: if only nearest
neighbor couplings are considered n commensurate-coupled trans-
mission lines can be reduced to a network consisting of n — 1 pairs
of coupled lines.

To prove this theorem we will prove that the network of Fig. 1
and the network of Fig. 2 dre equivalent. In Fig. 1(a) is shown a
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